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Group - A (Abstract Algebra)

Answer all the questions from this group. Maximum you can obtain in this group is 50.

1.

7.

10.

An element 2 of a group is called a square if x = y? for some y in the group. Suppose H is a subgroup
of an abelian group G. If every element of H is a square and every element of G/H is a square then
show that every element of G is a square. (3]
. Characterize all simple commutative groups. 2]

. Suppose G is a finite abelian group and G has no element of order 2. Show that the mapping f : G — G

defined by f(z) = 22,Vx € G is an isomorphism. What happens if G is an infinite abelian group?

[4+2]

. Find all automorphisms of the group Zs. [4]
. Can a group of order 8 contain 7 elements of order 27 Justify. (3]
. Give an example of an infinite abelian group with exactly 6 elements of finite order. Justify your
answer. (3]
Consider the multiplicative groups (R*,-) and ( R*,:), where R* = {z € R : # # 0} and RT = {z €
R : 2z > 0}. Show that R* is an internal direct product of RT and the subgroup {1, —1}. (3]

. Can you express the group (Q, +) as an internal direct product of two proper subgroups? Justify your
answer. (3]

. Prove that no group of order 12 is simple. [5]

Prove that a group of order 85 is cyclic. [5]




11. Does there exist a ring epimorphism from R to Z? Justify. (3]
12. Find all the units of Z[i]. Find all the associates of 3 — 2i in Z[i]. [4]
13. Prove that 2 + iv/5 is irreducible but not prime in Z[iv/5]. [3 + 3]
14. Show that the field Q has no proper subfield. (3]
15. Let I = {(m,n) € Z x Z : 3|n}. Show that I is a maximal ideal of Z x Z. [4]
16. Show that 47 is a maximal ideal of 2Z but not a prime ideal of 2Z. (3]
Group - B (Multivariable Calculus)
Answer any 3 questions from question nos. 17-21 in this group. [3 x 10 = 30 marks]
17. (a) Check whether the simultaneous and repeated limits exist for the function f given below, as z
and y both tend to 0. [4]
. 1 .
Fay) = ysin (1) + 5021:7_&;2, ifz#0
0, otherwise.
(b) Let f:R? — R? and g : R3 — R? be given by
fz,y) = (e$+29, sin(2z +y)) and g(u,v,w) = (u+ 20% 4 3w?, 20 — u?)
Further, if h(u,v,w) = f o g(u,v,w), compute the Jacobian matrices D f(x,y), Dg(u,v,w) and
Dh(1,-1,1). 6]
18. (a) Let S C R? be compact and f : S — R? be continuous and one-one on S. Show that the inverse
f~t: f(S) — S is continuous. 2]
(b) f is continuous iff for each subset E C R? we have f~1(E) C f~!(E). (i.e. closure of the preimage
is contained in preimage of the closure). (3]
(c) Let S be a nonempty subset of R™. The distance of a point z € R™ from a set S is defined by
d(z,S) = inf{||z — y|| : y € S}. Show that if S is compact, then Jyy € S such that d(z,S) =
d(z,yp). [5]
19. Let f:R?~ {(0,0)} — R be smooth and homogeneous of degree d. Prove that [3+4+3]
(a) if d = 0, then f is bounded. Also, prove that f extends to be continuous at (0,0) iff f is a
constant function.
(b) if d > 0, then f is continuous everywhere if we define f(0,0) = 0. Also, prove that if d < 0 then
we can not make f continuous at (0, 0).
(c) If f is homogeneous of degree 1 and satisfies f(—z) = —f(z) and f(0) = 0, prove that % is not
continuous at (0,0) unless it is a constant function.
2 2 2
20. (a) If ;% + 4% + &5 = 1, prove that [6]
a—2+a—2+8—2 u =2 xz—i- 2—1—22 U
ox2 Oy 022) Ox yay 0z
(b) Find the Taylor expansion about (1,7/2) of sinz and siny upto second degree terms. [4]
21. (a) Find the shortest distance from the origin to the surface z? — xy = 1. [4]

(b) Let f:R? — R be such that all first, second and third order partial derivatives of f exists and is
bounded over the entire domain. Will the mixed derivatives f.,(a,b) and fy,(a,b) be equal for
any arbitrary point (a,b) € R?? Justify. (No marks will be awarded for wrong or no justification.)

[6]



Group - C (Riemann Integration and Bounded Variation)

Answer any 2 questions from question nos. 22-24 in this group.

[2 x 10 = 20 marks]

22. (a) Show that the function f(x) = [z],1 < z < 3 is function of bounded variation on [1,3]. Find its
variation function on [1,3]. Express f as a difference of two monotone non-decreasing functions.

(b)

23. (a)

24. (a)

Test whether the function f : [0,1] — R defined by

in (L
fz) = {\/ESIOH (z) 770x<:330§ 1

is a function of bounded variation on [0, 1].

Test the Riemann integrability of the function f : [0,1] — R defined by

_[V1-22 [ze0,1]NQ
f@){ 1—2 ,zel0,1]NnQ°

Show that

Let f:[1,3] — R be defined by

State with reasons :

i. Whether f is Riemann integrable on [1,3].

ii. Whether the formula ff f(z)dz = (b—a)f(&) for some £ € [a,b] is true.
iii. Whether the fundamental theorem of integral calculus is applicable to f on [1,3].

Calculate
.1 1 T \J1+t2
1. };51411 A f4 (& dt

.. ) xr 42
ii. lim —2— [ et"dt.
z—0 1—e*” J0

[6]



